Skip to content Skip to sidebar Skip to footer

MATERI : Sistem hidrolik dan Kompresor Lengkap

     Hallo, Pada kesempatan kali ini saya akan memberikan sebuah materi seputar dunia otomotif/permesinan untuk anak-anak Sekolah Menengah Kejuruan (SMK). berikut ini adalah materi yang membahas tentang Sistem Kerja Hidrolik dan kompresor. materi ini saya rangkum dari berbagai sumber dan saya susun sedemikian rupa agar terlihat sedikit lebih rapi. Untuk kalian yang menginginkan Soft Copy (File dalam bentuk MS. Word) berikut ini saya berikan filenya : MATERI : Sistem hidrolik dan Kompresor Lengkap


SISTEM HIDROLIK
v Pengertian
Sistem hidrolik adalah suatu system pemindah tenaga dengan menggunakan zat cair atau fluida sebagai perantara. Dimana fluida penghantar ini dinaikan tekanannya oleh pompa pembangkit tekanan yang kemudian diteruskan ke silinder kerja melalui pipa-pipa saluran dan katup-katup. Gerakan translasi batang piston dari silinder

kerja yang diakibatkan oleh tekanan fluida pada ruang silinder dimanfaatkan untuk gerak maju dan mundur.


v Macam – Macam Sistem Hidrolik
Hidrolik terbagi dalam 2 bagian :
a. Hidrodinamika : yaitu Ilmu yang mempelajar tentang zat cair yang bergerak
b. Hidrostatik : yaitu Ilmu yang mempelajari tentang zat cair yang bertekanan 
Pada hidrostatik adalah kebalikan dari Hidrodinamika yaitu zat cair yang digunakan sebagai media tenaga, zat cair berpindah menghasilkan gerakan dan zat cair berada dalam tabung tertutup

v Dasar- dasar Sistem Hidrolik
a. Hukum Pascal
Prinsip dasar sistem hidrolik berasal dari hukum pascal, dimana tekanan dalam fluida statis harus mempunyai sifat-sifat sebagai berikut:
1) Tekanan bekerja tegak lurus pada permukaan bidang.
2) Tekanan disetiap titik sama untuk semua arah.
3) Tekanan yang diberikan kesebagian fluida dalam tempat tertutup, merambat secara seragam ke bagian lain fluida.

v Keuntungan dan Kelebihan
Adapun keuntungannya adalah sebagai berikut:
a. Dapat menyalurkan torque dan gaya yang besar
b. Pencegahan overload tidak sulit
c. Kontrol gaya pengoperasian mudah dan cepat.
d. Pergantian kecepatan lebih mudah
e. Getaran yang timbul relatif lebih kecil
f. Daya tahan lebih lama. 


Namun system hydraulic ini juga mempunyai beberapa kekurangan yaitu:
a. Peka terhadap kebocoran
b. Peka terhadap perubahan temperature
c. Kadang kecepatan kerja berubah
d. Kerja system saluran tidak sederhana.

v Hal yang menyebabkan aliran fluida terhambat
Hal hal yang menyebabkan aliran fluida terhambat adalah:
a. Beban piston silinder, semakin besar beban semakin besar tekanan yang dibutuhkan.
b. Jika ada back pressure, maka aliran akan terhambat.
c. Sirkuit hydraulic yang ada, hose, valve, fitting, filter dan orifice akan menyebabkan gesekan dan fluida sulit untuk mengalir.
Catatan: Gesekan aliran akan semakin besar jika:
- Bertambah panjangnya pipa atau hose
- Kecepatan oli
- Berkurang dengan besarnya diameter saluran.
- Berkurang karena temperatur oli

v Fluida Hidrolik
Pada system hydraulic, fluida yang umum digunakan adalah oli. Oli yang umum digunakan adalah:
a. Oli mesin ( Engine oil)
b. Oli hydraulic (hidrolik oil)
Oli Mesin (Engine Oil)

Kekentalan (viscosity)
Kekentalan oli mesin dinyatakan dalam SAE (Society of Automotive Engineering) dimana makin besar angkanya berarti oli mesin tersebut semakin kental. Contoh SAE 10, SAE 20, SAE 30.
Klasifikasi Oli mesin dinyatakan dalam API (American Petrolium Institute), dimana makin tinggi huruf akhir maka klasifikasi oli makin baik.
Contoh: 
Untuk Diesel engine CA, CB, CC, CD
Untuk gasoline engine: SA, SB, SC, SD, SE, SF
Oli Hydraulic
Pada oli hydraulic mempunyai kekentalan dan klasifikasi sebagaimana oli mesin, hanya tidak dinyatakan dalam SAE maupun kode API service.
Sifat oli pada system hidrolik:
a. Bersifat tidak dapat dimampatkan (uncrompressible).
b. Bersifat mudah mengalir (fluidity).
c. Harus stabil sifat fisika dan kimianya.
d. Mempunyai sifat melumasi.
e. Mencegah terjadinya karat.
f. Bersifat mudah menyesuaikan dengan tempat.
g. Dapat memisahkan kotoran kotoran.

Fungsi fungsi fluida hidrolik:
Transmisi daya Menurut prinsip Pascal, daya hidrolik merupakan hasil kali antara transmisi (tekanan) gaya dengan debit aliran yaitu PQ/60 KW
Pelumasan Mencegah keausan dan gesekan pada komponen 
Menutup Kekentalan oli akan membantu menutup celah antar komponen. 
Mendinginkan Mencegah timbulnya panas, panas yang berlebihan akibat keausan, kehilangan tekanan, kebocoran internal.
Kerusakan Pada Oli.
Penggunaan oli hidrolik harus dijaga dari kerusakan, karena kerusakan oli hidrolik bisa mengakibatkan kerja yang tidak maksimal dari unit. Berikut adalah beberapa penyebab kerusakan oli:
o Kontaminasi (contamination)
Yaitu kerusakan yang diakibatkan pengaruh atau kesalahan dari luar luar oli tersebut.
o Deteriorasi (deterioration)
Yaitu kerusakan oli yang disebabkan oleh pengaruh dari oli itu sendiri 
Selanjutnya pada gambar berikut ditunjukan ganguan gangguan yang terjadi jika oli mengalami kerusakan.

v Komponen, Simbol Dan Diagram Hidrolik
Komponen hidrolik dalam system pemindah tenaga dengan system hidrolik sangat penting untuk diketahui, fungsi dan cara kerjanya. Pembacaan symbol symbol hidrolik sangatlah sederhana namun sangat lengkap dan mewakili sesuai dengan kerja komponen yang sebenarnya.
Sebagai contoh pada symbol pompa, maka symbol digambar sama persis dengan cara kerja pompa yang sebenarnya .
Komponen dan Simbol

a. Hidrolik Tangki / Hydraulic Reservoir

Tangki hydraulic sebagai wadah oli untuk digunakan pada sistem hidrolik. 

Oli panas yang dikembalikan dari sistem/actuator didinginkan dengan cara menyebarkan panasnya. Dan menggunakan oil cooler sebagai pendingin oli, kemudian kembali ke dalam tangki. Gelembung-gelembung udara dari oli mengisi ruangan diatas permukaan oli.Untuk mempertahankan kondisi oli baik selama mesin operasi, dilengkapi dengan saringan yang bertujuan agar kotoran jangan masuk kembali tangki.

Hidrolik tangki diklasifikasikan sebagai Vented Type reservoir atau pressure reservoir, dengan adanya tekanan di dalam tangki, masuknya debu dari udara akan berkurang dan oli akan didesak masuk kedalam pompa.
b. Pompa
Pompa hydraulic berfungsi seperti jantung dalam tubuh manusia adalah sebagai pemompa darah
Pompa hidrolik merupakan komponen dari sistem hidrolik yang membuat oli mengalir atau pompa hidrolik sebagai sumber tenaga yang mengubah tenaga mekanis menjadi tenaga hidrolik.
Klasifikasi pompa
Non Positive Displacement pump : mempunyai penyekat antara lubang masuk/inlet port dan lubang keluar/out port, sehingga cairan dapat mengalir di dalam pompa apabila ada tekanan.
Contoh : Pompa air termasuk disebut juga tipe non positive diplasement. 
Positive diplacement pump : Memiliki lubang masuk/inlet port dan lubang keluar/outlet port yang di sekat di dalam pompa. Sehingga pompa jenis ini dapat bekerja dengan tekanan yang sangat tinggi dan harus di proteksi terhadap tekanan yang berlebihan dengan menggunakan pressure relief valve.
Contoh : Pompa hidrolik alat-alat berat
Fixed displacement pump : mempunyai sebuah ruang pompa dengan volume tetap (fixed volume pumping chamber) Out putnya hanya bisa diubah dengan cara merubah kecepatan kerja (drive speed )
Variable displacement pump : mempunyai ruang pompa dengan volume bervariasi, outputnya dapat diubah dengan cara merubah displacement atau drive speed, fixed displacement pump maupun variable pump dipakai pada alat-alat pemindah tanah

c. Motor
Simbol untuk Fixed displacement motor adalah sebuah lingkaran dengan sebuah segitiga di dalamnya.
Simbol pompa mempunyai segitiga yang menunjukkan arah aliran., dan simbol motor memiliki segitiga yang mengarah ke dalam Simbol untuk Single elemen pump / motor yang juga termasuk reversible memiliki dua segitiga di dalam lingkaran, masing-masing menunjukkan arah aliran. 
Sebuah variable displacement pump/motor diperlihatkan sebagai simbol dasar dengan tanda anak panah yang digambarkan menyilang

d. Saluran Hose, Pipa
Ada tiga macam garis besar yang dipergunakan dalam penggambaran symbol grafik untuk melambangkan pipa, selang dan saluran dalam sehubungan dengan komponen-komponen hidrolik
Splid line digunkan melambangkan pipa kerja hidrolik. Pipa kerja ini menyalurkan aliran utama oli dalam suatu sistem hidrolik.
Dashed line digunakan untuk mlambangkan pipa control hidrolik. Pipa control ini menyalurkan sejumlah kecil oli yang dipergunakan sebagai aliran bantuan untuk menggerakkan atau mengendalikan komponen hidrolik.
Suatu ilustrasi simbol grafik terdiri dari line kerja, Line control dan line buang yang saling berpotongan.
Perpotongan di gambarkan dengan sebuah setengah lingkaran pada titik perpotongan antara satu garis dengan garis line, atau digambarkan sebagai dua garis yang saling bepotongan.
Hubungan antara dua garis tidak dapat diduga kecuali jika diperhatikan dengan sebuah titik penghubung. Titik penghubung di gunakan untuk memperlihatkan suatu ilustrasi dimana garis-garis berhubungan.
Jika sambungan terjadi pada bentuk T , titik penghubung dapat diabaikan karena hubungan garis antara kedua garis tersebut terlihat jelas.
Bila diperlihatkan suatu arah aliran tertentu, tanda kepala panah bisa ditambahkan pada garis di dalam gambar yang menunjukkan arah aliran oli

e. Silinder hidrolik
Silider hidrolik merubah tenaga zat cair menjadi tenaga mekanik. Fluida yang tertekan , menekan sisi piston silinder untuk menggerakan beberapa gerakan mekanis.
Singgle acting cylinder hanya mempunyai satu port, sehingga fluida bertekanan hanya masuk melalui satu saluran, dan menekan ke satu arah. Silinder ini untuk gerakan membalik dengan cara membuka valve atau karena gaya gravitasi atau juga kekuatan spring.
Double acting cylinder mempunyai port pada tiap bagian sehingga fluida bertekanan bias masuk melalui kedua bagian sehingga bias melakukan dua gerakan piston.
Kecepatan gerakan silinder tergantung pada fluid flow rate ( gallon / minute) dan juga volume piston. Cycle time adalah waktu yang dibutuhkan oleh silinder hidrolik untuk melakukan gerakan memanjang penuh. Cycle time adalah hal yang sangat penting dalam mendiagnosa problem hidrolik.
Volume = Area x Stroke
CYCLE TIME = (Volume/Flow Rate) x 60
f. Pressure Control Valve
Tekanan hidrolik dikontrol melalui penggunaan sebuah valve yang membuka dan menutup pada waktu yang berbeda berdasar aliran fluida by pass dari tekanan tinggi ke tekanan yang lebih rendah. Tanda panah menunjukan arah aliran oli. Pressure control valve bisanya tipe pilot, yaitu bekerja secara otomatis oleh tekanan hidrolik, bukan oleh manuasia. Pilot oil ditahan oleh spring yang biasanya bias di adjust. Semakin besar tegangan spring, maka semakin besar pula tekanan fluida yang dibutuhkan untuk menggerakan valve.

g. Pressure Relief Valve
Presure Relief Valve membatasi tekanan maksimum dalam sirkuit hidrolik dengan membatasi tekanan maksimum pada komponen-komponen dalam sirkuit dan di luar sirkuit dari tekanan yang berlebihan dan kerusakan komponen.
Saat Presure relief valve terbuka, Oli bertekanan tinggi dikembalikan ke reservoir pada tekanan rendah. Presure Relief valve biasanya terletak di dalam directional control valve.
Ada dua macam relief valve yang digunakan yaitu :
Direct Acting Relief Valve yang menggunakan sebuah pegas kuat untuk menahan aliran dan membuka pada saat tekanan hidrlik lebih besar daripada tekanan pegas Pilot Operated relief valve yang menggunakan tekanan pegas dan tekanan oli untuk menjalankan relief valve dan merupakan jenis yang lebih umum dipakai

h. Directional Controll Valve.
Aliran fluida hidrolik dapat dikontrol dengan menggunakan valve yang hanya memberikan satu arah aliran. Valve ini sering dinamakan dengan check valve yang umumnya menggunakan system bola.
Simbol directional control valve ada yang berupa gabungan beberapa symbol. Valve ini terdiri dari bagian yang menjadi satu blok atau juga yang dengan blok yang terpisah. Garis putus putus menunjukan pilot pressure. Saluran pilot pressure ini akan menyambung atau memutuskan valve tergantung dari jenis valve ini normaly close atau normally open.
Spring berfungsi untuk mengkondisikan valve dalam posisi normal. Jika tekanan sudah build up pada sisi flow side valve, saluran pilot akan akan menekan dan valve akan terbuka. Ketika pressure sudah turun kembali maka spring akan mengembalikan ke posisi semula dibantu pilot line pasa sisi satunya sehingga aliran akan terputus. Valve ini juga umum digunakan sebagai flow divider atau sebagai flow control valve.
i. Flow Control Valve
Fungsi katup pengontrol aliran adalah untuk mengontrol arah dari gerakan silinder hidrolik atau motor hidrolik dengan merubah arah aliran oli atau memutuskan aliran oli.
Flow control valve ada beragam macam, tergantung dari berapa posisi, sebagai contoh:
Flow control valve dua posisi biasanya digunakan untuk mengatur aliran ke actuator pada system hidrolik sederhana.
Simbol symbol flow control valve dibawah ini menunjukan beberapa jenis cara pengoperasiannya, ada yang menggunakan handle, pedal, solenoid dan lain sebagainya.

j. Flow Control Mechanis
Ada kalanya system hidrolik membutuhkan penurunan laju aliran atau menurunkan tekana oli pada beberapa titik dalam sistem. Hal ini bias dilakukan dengan memasang restrictor. Restrictor digambarkan seperti pengecilan dalam system, dapat berupa fixed dan juga variable, bahakan bias dikontrol dengan system lain.
k. Simbol pengkodisian zat cair
Pengkodisian oli bisa dilakukan dengan berbagai cara, biasanya berupa filter, pemanas dan pendingin.
Ada 2 jenis saringan yang umum dipakai yaitu :
Strainer 
Terbuat dari saringan kawat yang berukuran halus.
Saringan ini hanya memisahkan partikel-partikel kasar yang ada didalam oli.
Saringan ini biasanya di pasang di dalam reservoir tank pada saluran masuk ke pompa.
Filter :
Terbuat dari kertas khusus.
Saringan ini memisahkan partikel-partikel halus yang ada di dalam oli 
Saringan ini biasanya terdapat pada saluran balik ke reservoir tank 
Tugas Hidrolik Oil filter
Menapis kotoran, partikel logam dsb.
Kotoran dapat menyebabkan cepat terjadinya keausan Oil Pump, Hydrlic Cylinder dan Valve.
Saringan filter yang halus akan menjadi buntu secara berangsur-angsur sejalan dengan jam operasi mesin, maka elemennya perlu diganti secara berkala.
Dilengkapi dengan by pass valve sehingga bila filter buntu, oli dapat lolos dari filter dan kembali ke tangki. Hal ini dapat mencegah terjadinya tekanan yang berlebihan dan kerusakan pada sistem tersebut.
l. Akumulator
Akumulator berfungsi sebagai peredam kejut dalam system. Biasanya akumulator terpasang paralel dengan pompa dan komponen lainnya. Akumulator menyediakan sedikit aliran dalam kondisi darurat pada sistem steering dan juga rem, menjaga tekanan konstan dengan kata lain sebagai pressure damper. Umumnya pada sistem hidrolik modern digunakan akumulator dengan tipe gas.


v Cara Kerja

Cara kerja Sistem Hidrolik


1. Tekanan Hidrolik menggunakan sebuah pompa (gear pump piston pump No.4) di dalam tangki

hidrolik yang digerakkan oleh sebuah motor yang terpasang vertikal diatas tangki hidrolik.



2. Minyak hidrolik didorong oleh Radial Piston Pump (No.4) melalui sebuah Check Valve (No.9) yang berfungsi agar minyak hidrolik tidak kembali ke pompa penghisap menuju ke Pressure Control Valve/Relief Valve (No. 7) melalui Four Way 2 Ball Valve-Manifold Block (No. 5).



3. Minyak hidrolik yang berada di dalam Pressure Control Valve dapat diatur secara manual oleh sebuah Hand Control Valve (No.6) ini, berfungsi mengatur dengan tangan terhadap posisi hidrolik silinder maju dan mundur, apabila sistem otomatis maju mundur tidak bisa bekerja lagi atau rusak.



4. Tekanan minyak dalam Pressure Control Valve (No.7) digabung dengan sebuah Solenoid Unloading Valve (No.8) yang dipasang diatas Manifold Block (No.5) mendapat perintah dari Amplifier Card (Relay Control) untuk membuka katupnya pada saat beban screw press naik dan menutupnya pada saat beban screw press turun, sehingga sumbu silinder dapat maju mundur sesuai dengan beban yang distel di amplifier card (relay control) yang dapat mendeteksi ampere screw press melalui sebuah CT yang terpasang di dalam kotak starter.



5. Silinder hidrolik mempunyai dua jalur sambungan, satu didepan dan satu di belakang. Tekanan minyak yang masuk ke jalur depan, sumbu silinder hidroliknya mundur, dan yang masuk ke jalur belakang sumbu hidroliknya maju.



6. Minyak hidrolik dapat disirkulasi secara otomatis dan teratur oleh pompa hidrolik ke dalam tangki hidrolik, didinginkan melalui sebuah Intergral Oil Cooler (No.17), kemudian disaring oleh Return Line Filter (No.12). Minyak hidrolik harus tetap bersih dan tidak berkurang.



7. Untuk menambah (atau berkurang) tekanan hidrolik dapat dibuka dengan cara memutar baut yang terdapat di Pressure Control Valve/Relief Valve (No.7) secara perlahan-lahan hingga mencapai 45 bar. Untuk mengetahui besarnya tekanan minyak dapat melihat penunjuknya pada PressureGauge (No.11). Pressure Control Valve/Relief Valve (No.7) dan SolenoidUnloading Valve (No.11) berfungsi untuk mengatur arus tekanan ke hidrolik silinder, dan Shut Off Valve (No.10) yang berfungsi untuk menutup tekanan hidrolikke Pressure Gauge (No.11). 



8. Ketinggian level dan suhu minyak hidrolik didalam tangki dapat dilihat pada Fluid Level Gauge (No.15).



9. Pengoperasian sistem hidrolik tersebut diatas, jika menghendaki Elektro Motor Hidrolik (No.2) dapat berhenti pada tekanan kerja tertentu dan berjalan kembali apabila tekanan kerja berkurang, maka untuk itu harus dipasang sebuah Pressure Switch .



10. Untuk menstabilkan tekanan kerja agar tetap apabila elektro motor berhenti, harus pula dipasang akumulator (integral oil cooler No.17 ditiadakan). (catatan: tanpa akumulator sistem hidrolik diatas,tekanan kerja juga stabil dan konstan karena pompa hidrolik tetap bekerja).



11. (Point 9 dan 10 diatas) Dengan menggunakan pressure switch dan akumulator dalam sistem hidrolik ini agar elektrik motor dan pompa hidrolik dapat berhenti sejenak (5-30detik) sangatlah tidak efesien karena biaya perawatannya mahal dan tidak memperoleh hasil yang setimpal.

Adapun elektrik motor dan pompa hidrolik selalu dalm keadaan ON/OFF seketika karena beban ampere teralu tinggi dan suhu panas sehingga mudah terbakar.
Pompa yang digerakkan via fleksibel kopling selalu disentakkan oleh ON/OFF electric motor, maka gigi dan piston pompa cepat rusak dan sompel.
Perawatan akumulator tidak dapat dilakukan sendiri setelah beroperasi selam 1-2 tahun, karena harus diulang dengan gas nitrogen setiap tahun dengan alat suntik khusus-charging kit.

v Klasifikasi
Klasifikasi Pompa Hidrolik
Semua pompa menimbulkan aliran ( flow ). Prinsipnya operasinya disebut DISPLACEMENT “ dimana zat cair atau fluida diambil dan dipindahkan ke tempat lain. Secara umum pompa mengubah tenaga mechanical menjadi tenaga fluida hidrolik. Sedangkan yang dimaksud dengan DISPLACEMENT adalah volume zat cair yang dipindahkan tiap cycle ( putaran ) dari pompa.
Klasifikasi Pompa. 
Pada dasarnya pompa hirolik diklasifikasikan menjadi :
a. Non positive displacement
Yang dimaksud dengan pompa NON POSITIVE DISPLACEMENT ialah bila pompa mempunyai karakteristik :
1. Internal leakage besar.
2. Perubahan tekanan mempunyai pengaruh yang besar terhadap kapasitasnya 
b. Positive displacement.
Yang dimaksud dengan pompa POSITIVE DISPLACEMENT ialah bila pompa mempunyai karakteristik :
1. Internal leakage kecil ( untuk mendapatkan ini dibuat SEAL atau presisi ).
2. Perubahan tekanan berpengaruh kecil terhadap kapasitasnya ( dengan dibuatnya presisi / SEAL, akan melawan kebocoran pada saat tekanan naik ).


SISTEM KOMPRESOR

Kompresor secara sederhana bisa diartikan sebagai alat yang digunakan untuk menghasilkan udara bertekanan(meningkatkan tekanan udara dari atmosfir ke tekanan yang dibutuhkan) untuk kebutuhan industry maupun domestik. Kompresor bisa kita temukan pada transportasi material, control gate dan valve, pembersihan material, penanganan komponen, spray material.

Sekalipun sama-sama sebagai alat yang digunakan untuk menghasilkan udara bertekanan, pada masing-masing peralatan yang berbeda, cara kerja kompresor pun bisa berbeda pula. Tergantung pada kebutuhan operasional yang disesuaikan dengan tekanan kerja dan volume.

Secara umum kompresor digunakan atau berfungsi menyediakan udara dengan tekanan tinggi. Prinsip kerja kompresor seperti ini biasa kita temukan pada mesin otomotif. Fungsi kedua dari kompresor adalah untuk membantu reaksi kimia dengan cara meningkatkan sistem tekanan. Kompresor seperti ini bisa ditemukan pada industri kimia atau yang berhubungan dengan itu. Kompresor juga bertugas untuk membagi-bagikan gas dan bahan bakar cair melalui instalasi pipa-pipa gas. Selain itu, dalam peralatan pengangkat berat yang bekerja secara pneumatik, kompresor digunakan dalam fungsinya sebagai pengiri udara untuk sumber tenaga.

Sebuah kompresor apabila dilihat dari cara kerjanya, maka akan ada dua jenis kompresor yang masing-masing metode kerjanya berbeda. Jenis pertama adalah kompresor dengan metode kerja dan yang kedua adalah kompresor dengan metode kerja dynamic.

Kompresor jenis positif displacement. Kompresor model ini bekerja dengan prinsip perpindahan positif (positive displacement principle) dimana udara dikompres dengan aksi mekanis, lalu pada saat yang sama volume ruangnya diperkecil, dengan demikian tekanan di dalam dengan sendirinya akan naik.
Tekanan yang tinggi inilah yang digunakan untuk berbagai keperluan sesuai dengan peruntukkan kompresor tadi. Kompresor model positif displacement ini digunakan dalam reciprocating compressor dan rotari.

Sementara itu pada kompresor model dinamik, merupakan mesin continuous-flow dimana elemen berputarnya dengan cepat mengalirkan udara, mengubah tekanan. Menarik udara di satu sisi dan mengompresnya dengan percepatan massal yang meningkatkan energi kinetik sehingga berubah menjadi tekanan tinggi. Kenaikan tekanan udara terjadi dengan konversi energi dari kecepatan udara menjadi tekanan volume ruangnya tetap tapi udara yang ada didalam ruang tersebut diberi kecepatan. Kemudian pada saat yang sama kecepatan tersebut diubah menjadi tekanan. Hal ini bisa terjadi karena udara pada ruang yang volumenya tetap mengalami tekanan. Kompresor yang menggunakan model dynamic ini biasanya pada alat turbo axial flow.

1  PENGERTIAN KOMPRESOR
Kompresor adalah alat pemampat atau pengkompresi udara dengan kata lain kompresor adalah penghasil udara mampat. Karena proses pemampatan, udara mempunyai tekanan yang lebih tinggi dibandingkan dengan tekanan udara lingkungan (1atm). Dalam keseharian, kita sering memanfaatkan udara mampat baik secara langsung atau tidak langsung. Sebagai contoh, udara manpat yang digunakan untuk mengisi ban mobil atau sepeda montor, udara mampat untuk membersihkan bagian-bagian mesin yang kotor di bengkel-bengkel dan manfaat lain yang sering dijumpai sehari-hari.
Pada industri, penggunaan kompresor sangat penting, baik sebagai penghasil udara mampat atau sebagai satu kesatuan dari mesin-mesin. Kompresor banyak dipakai untuk mesin pneumatik, sedangkan yang menjadi satu dengan mesin yaitu turbin gas, mesin pendingin dan lainnya.
Dengan mengambil contoh kompresor sederhana, yaitu pompa ban sepeda atau mobil, prinsip kerja kompresor dapat dijelaskan sebagai berikut. Jika torak pompa ditarik keatas, tekanan di bawah silinder akan turun sampai di bawah tekanan atmosfer sehingga udara akan masuk melalui celah katup hisap yang kendur. Katup terbuat dari kulit lentur, dapat

Pengertian Pengisian
Menurut  Kamus  Besar  Bahasa  Indonesia  (KBBI),  pengisian adalah proses, rangkaian tindakan, pembuatan, atau pengolahan yang menghasilkan produk.
Berdasarkan pengertian diatas, dapat disimpulkan pengisian  adalah  pemasukan  udara  kedalam  silinder  motor.  Udara  tersebut diperlukan untuk proses kompresi sekali gas untuk proses pembakaran bahan bakar. Pada dasarnya pengisian dibedakan menjadi dua bagian :
Pengisian hisap adalah pengisian udara masuk silinder tanpa alat bantu (pompabilas), udara masuk karena perbedaan tekanan udara luar yang lebih besar dari pada  tekanan  dalam  silinder,  dimana  udara  bergerak  dari  tekanan  yang  lebih besar  kepada  tekanan  yang  lebih  rendah,  dan  karena  fungsi  torak  sebagai pengisap,  sambil  bergerak  kebawah  sekali  gas  mengisap  udara  luar  melalui katup masuk yang sedang terbuka.
Pengisian  tekan  adalah  pengisian  udara  masuk  silinder  menggunakan  pompa bilas,  udara  masuk  silinder  dengan  tekanan  yang  lebih besar  dari  1  atmosfir karena adanya pompa bilas tersebut, sehingga udara didalam silinder pada awal kompresinya  mempunyai  tekanan  jauh  lebih  besar  dari  1  atmosfir,  dengan demikian  dihasilkan  pembakaran  yang  lebih  sempurna  didalam  silinder  karena pengaruh  jumlah  udara  lebih  banyak,  berarti  juga  jumlah  molekul  oksigen  lebih banyak lagi.

Pengertian Tekanan
Tekanan atau dalam bahasa inggrisnya adalah pressure merupakan gaya per satuan luas bidang yang ditekan secara tegak lurus. Tekanan udara adalah tekanan yang diberikan oleh udara, karena geraknya tiap 1 cm2 bidang mendatar dari permukaan bumi sampai batas atmosfer. Tekanan udara mengalir dari tempat yang mempunya tekanan tinggi ke tempat yang memiliki tekanan lebih rendah, dapat secara vertikal atau horizontal.

Tekanan udara merupakan tenaga yang bekerja untuk menggerakkan massa udara dalam setiap satuan luas tertentu. Diukur dengan menggunakan barometer. Satuan tekanan udara adalah milibar (mb). Garis yang menghubungkan tempat-tempat yang sama tekanan udaranya disebut sebagai isobar. Tekanan udara memiliki beberapa variasi. Tekanan udara dibatasi oleh ruang dan waktu. Artinya pada tempat dan waktu yang berbeda, besarnya juga berbeda.

Udara mempunyai massa/berat besarnya tekanan diukur denganbarometer. Barograf adalah alat pencatat tekanan udara.Tekanan udara dihitung dalam milibar. Garis pada peta yang menghubunkan tekanan udara yang sama disebut isobar. Barometer aneroid sebagai alat pengukur ketinggian tempat dinamakan altimeter yang biasa digunakan untuk mengukur ketinggian pesawat terbang.

Tekanan udara antara lokasi yang satu dengan lokasi yang lain dan pada lokasi tertentu dapat berubah secara dinamis dari waktu ke waktu. Perbedaan atau perubahan tekanan uadara ini terutama disebabkan oleh pergeseran garis edar matahari, keberadaan bentang laut dan ketinggian tempa.

Fungsi kompresor angin
Kompresor angin berfungsi mengambil udara atau gas dari sekitar yang kemudian akan diberi tekanan di dalam tabung, lalu disalurkan kembali sebagai udara bertekanan. Kompresor udara umumnya dimanfaatkan untuk berbagai macam keperluan, seperti:
1.      Menyuplai udara bersih bertekanan tinggi untuk mengisi tabung atau silinder gas.
2.      Menyuplai udara bersih bertekanan ke sistem kontrol HVAC (Heating, Ventilation, dan Air Conditioning) pneumatic di beberapa bangunan perkantoran dan sekolah.
3.      Menyuplai sejumlah besar udara bertekanan pada peralatan bertenaga udara(Pneumatic Tools), seperti bor jack hammer
4.      Mengisi udara pada ban.
5.      Menyuplai udara pada penyelam.
6.      Menyuplai udara untuk alat-alat spray atau air brush.
7.      Gerinda udara.
8.      Menghasilkan udara bertekanan dengan volume besar untuk proses industri skala besar, seperti keperluan untuk oksidasi kokas minyak bumi, atau sistem purge pada pabrik semen.
2  KLASIFIKASI KOMPRESOR
Secara garis besar kompresor dapat diklasifikasikan menjadi dua bagian, yaitu Positive Displacement compressor, dan Dynamic compressor, (Turbo), Positive Displacement compressor, terdiri dari Reciprocating dan Rotary, sedangkan Dynamic compressor, (turbo) terdiri dari Centrifugal, axial dan ejector, secara lengkap dapat dilihat dari klasifikasi di bawah ini:

Positive Displacement Compressor
1. Kompresor Torak Resiprokal (reciprocating compressor)
Kompresor ini dikenal juga dengan kompresor torak, karena dilengkapi dengan torak yang bekerja bolak-balik atau gerak resiprokal. Pemasukan udara diatur oleh katup masuk dan dihisap oleh torak yang gerakannya menjauhi katup. Pada saat terjadi pengisapan, tekanan udara di dalam silinder mengecil, sehingga udara luar akan masuk ke dalam silinder secara alami. Pada saat gerak kompresi torak bergerak ke titik mati bawah ke titik mati atas, sehingga udara di atas torak bertekanan tinggi, selanjutnya di masukkan ke dalam tabung penyimpan udara. Tabung penyimpanan dilengkapi dengan katup satu arah, sehingga udara yang ada. dalam tangki tidak akan kembali ke silinder. Proses tersebut berlangsung terus-menerus hingga diperoleh tekanan udara yang diperlukan. Gerakan mengisap dan mengkompresi ke tabung penampung ini berlangsung secara terus menerus, pada umumnya bila tekanan dalam tabung telah melebihi kapasitas, maka katup pengaman akan terbuka, atau mesin penggerak akan mati secara otomatis.

2. Kompresor Torak Dua Tingkat Sistem Pendingin Udara
Kompresor udara bertingkat digunakan untuk menghasilkan tekanan udara yang lebih tinggi. Udara masuk akan dikompresi oleh torak pertama, kemudian didinginkan, selanjutnya dimasukkan dalam silinder kedua untuk dikompresi oleh torak kedua sampai pada tekanan yang diinginkan. Pemampatan (pengompresian) udara tahap kedua lebih besar, temperature udara akan naik selama terjadi kompresi, sehingga perlu mengalami proses pendinginan dengan memasang sistem pendingin. Metode pendinginan yang sering digunakan misalnya dengan sistem udara atau dengan system air bersirkulasi.
Batas tekanan maksimum untuk jenis kompresor torak resiprokal antara lain, untuk kompresor satu tingkat tekanan hingga 4 bar, sedangkan dua tingkat atau lebih tekanannya hingga 15 bar.

3. Kompresor Diafragma (diaphragma compressor)
Jenis Kompresor ini termasuk dalam kelompok kompresor torak. Namun letak torak dipisahkan melalui sebuah membran diafragma. Udara yang masuk dan keluar tidak langsung berhubungan dengan bagian-bagian yang bergerak secara resiprokal. Adanya pemisahan ruangan ini udara akan lebih terjaga dan bebas dari uap air dan pelumas/oli. Oleh karena itu kompresor diafragma banyak digunakan pada industri bahan makanan, farmasi, obatobatan dan kimia.
Prinsip kerjanya hampir sama dengan kompresor torak. Perbedaannya terdapat pada sistem kompresi udara yang akan masuk ke dalam tangki penyimpanan udara bertekanan. Torak pada kompresor diafragma tidak secara langsung menghisap dan menekan udara, tetapi menggerakkan sebuah membran (diafragma) dulu. Dari gerakandiafragma yang kembang kempis itulah yang akan menghisap dan menekan udara ke tabung penyimpan.

4. Kompresor Putar (Rotary Compressor)
Kompresor Rotari Baling-baling Luncur Secara eksentrik rotor dipasang berputar dalam rumah yang berbentuk silindris, mempunyai lubang-lubang masuk dan keluar. Keuntungan dari kompresor jenis ini adalah mempunyai bentuk yang pendek dan kecil, sehingga menghemat ruangan. Bahkan suaranya tidak berisik dan halus dalam, dapat menghantarkan dan menghasilkan udara secara terus menerus dengan mantap. Baling-baling luncur dimasukkan ke dalam lubang yang tergabung dalam rotor dan ruangan dengan bentuk dinding silindris. Ketika rotor mulai berputar, energi gaya sentrifugal baling-balingnya akan melawan dinding. Karena bentuk dari rumah baling-baling itu sendiri yang tidak sepusat dengan rotornya maka ukuran ruangan dapat diperbesar atau diperkecil menurut arah masuknya (mengalirnya) udara.

5. Kompresor Sekrup (Screw)
Kompresor Sekrup memiliki dua rotor yang saling berpasangan atau bertautan (engage), yang satu mempunyai bentuk cekung, sedangkan lainnya berbentuk cembung, sehingga dapat memindahkan udara secara aksial ke sisi lainnya. Kedua rotor itu identik dengan sepasang roda gigi helix yang saling bertautan. Jika roda-roda gigi tersebut berbentuk lurus, maka kompresor ini dapat digunakan sebagai pompa hidrolik pada pesawat-pesawat hidrolik. Roda-roda gigi kompresor sekrup harus diletakkan pada rumah-rumah roda gigi dengan benar sehingga betul-betul dapat menghisap dan menekan fluida.

6. Kompresor Root Blower (Sayap Kupu-kupu)
Kompresor jenis ini akan mengisap udara luar dari satu sisi ke sisi yang lain tanpa ada perubahan volume. Torak membuat penguncian pada bagian sisi yang bertekanan. Prinsip kompresor ini ternyata dapat disamakan dengan pompa pelumas model kupu-kupu pada sebuah motor bakar. Beberapa kelemahannya adalah: tingkat kebocoran yang tinggi. Kebocoran terjadi karena antara baling-baling dan rumahnya tidak dapat saling rapat betul. Berbeda jika dibandingkan dengan pompa pelumas pada motor bakar, karena fluidanya adalah minyak pelumas maka film-film minyak sendiri sudah menjadi bahan perapat antara dinding rumah dan sayap-sayap kupu itu. Dilihat dari konstruksinya, Sayap kupu-kupu di dalam rumah pompa digerakan oleh sepasang roda gigi yang saling bertautan juga, sehingga dapat berputar tepat pada dinding.

Dynamic Compressor
1. Kompresor Aliran (turbo compressor)
Jenis kompresor ini cocok untuk menghasilkan volume udara yang besar. Kompresor aliran udara ada yang dibuat dengan arah masuknya udara secara aksial dan ada yang secara radial. Arah aliran udara dapat dirubah dalam satu roda turbin atau lebih untuk menghasilkan kecepatan aliran udara yang diperlukan. Energi kinetik yang ditimbulkan menjadi energy bentuk tekanan.

2. Kompresor Aliran Radial
Percepatan yang ditimbulkan oleh kompresor aliran radial berasal dari ruangan ke ruangan berikutnya secara radial. Pada lubang masuk pertama udara dilemparkan keluar menjauhi sumbu. Bila kompresornya bertingkat, maka dari tingkat pertama udara akan dipantulkan kembali mendekati sumbu. Dari tingkat pertama masuk lagi ke tingkat berikutnya, sampai beberapa tingkat sesuai yang dibutuhkan. Semakin banyak tingkat dari susunan sudusudu tersebut maka akan semakin tinggi tekanan udara yang dihasilkan. Prinsip kerja kompresor radial akan mengisap udara luar melalui sudu-sudu rotor, udara akan terisap masuk ke dalam ruangan isap lalu dikompresi dan akan ditampung pada tangki penyimpanan udara bertekanan hingga tekanannya sesuai dengan kebutuhan.

3. Kompresor Aliran Aksial
Pada kompresor aliran aksial, udara akan mendapatkan percepatan oleh sudu yang terdapat pada rotor dan arah alirannya ke arah aksial yaitu searah (sejajar) dengan sumbu rotor. Jadi pengisapan dan penekanan udara terjadi saat rangkaian sudu-sudu pada rotor itu berputar secara cepat. Putaran cepat ini mutlak diperlukan untuk mendapatkan aliran udara yang mempunyai tekanan yang diinginkan. Teringat pula alat semacam ini adalah seperti kompresor pada sistem turbin gas atau mesin-mesin pesawat terbang turbo propeller. Bedanya, jika pada turbin gas adalah menghasilkan mekanik putar pada porosnya. Tetapi, pada kompresor ini tenaga mekanik dari mesin akan memutar rotor sehingga akan menghasilkan udara bertekanan.

3  CARA KERJA KOMPRESOR TORAK
Seperti diperlihatkan pada gambar dibawah ini, kompresor torak atau kompresor bolak- balik pada dasarnya dibuat sedemikian rupa hingga gerakan putar dari penggerak mula menjadi gerak bolak- balik. Gerakan ini diperoleh dengan menggunakan poros engkol dan batang penggerak yang menghasilkan gerak bolak- balik pada torak.
1.      Hisap
Bila proses engkol berputar dalam arah panah, torak bergerak ke bawah oleh tarikan engkol. Maka terjadilah tekanan negative ( di bawah tekanan atmosfer ) di dalam silinder, dan katup isap terbuka oleh perbedaan tekanan, sehingga udara terhisap.
1.            Piston bergerak dari TDC ke BDC
2.            Intake valve membuka & exhaust valve menutup
3.            Udara luar terisap ( karena didalam ruang bakar kevakumannya lebih tinggi ), yang menjelaskan tentang langkah isap pada kompresor torak satu tingkat.
2. Efisiensi Volumetrik
Efisiensi volumetrik adalah persentase pemasukan udara yang diisap terhadap volume ruang bakar yang tersedia.
A.    Kompresi
Bila torak bergerak dari titik mati bawah ketitik mati atas, katup isap tertutup dan udara di dalam silinder dimampatkan.
B.     Piston bergerak dari BDC ke TDC
C.     Kedua valve menutup
D.    Udara dikompresikan dan menyebabkan suhu dan tekanan naik(akibat dari ruangnya dipersempit), seperti gambar 11. yang menjelaskan tentang langkah kompresi pada kompresor torak satu tingkat. 
3. Power Stroke
·         Gas sisa pembakaran mengembang ( ekspansi karena panas, yang menyebabkan gaya dorong )
·         Kedua valve menutup
·         Piston terdorong turun ke BDC

4. Keluar atau Buang
Bila torak bergerak keatas, tekanan didalam silinder akan naik, maka katup keluar akan terbuka oleh tekanan udara atau gas, dan udara atau gas akan keluar.
a.       Piston bergerak dari BDC ke TDC
b.      Exhaust valve membuka
c.       Sisa pembakaran terbuang ( melalui exhaust valve & exhaust manifold ), seperti gambar 12. yang menjelaskan tentang langkah isap pada kompresor torak satu tingkat. 

4. JENIS-JENIS KOMPRESOR ANGIN
Secara umum air compressor dikelompokkan menjadi :
1.      Air compressor mini

Ada beberapa macam air compressor jenis ini, pada intinya air compressor mini tidak menggunakan tabung tekanan, jadi bentuknya mini dan bekerja hanya menghasilkan tiupan udara. Contoh

1.      Air compressor mini dengan penggerak motor DC untuk perlengkapan mobil.
2.      Air compressor mini untuk pengecatan sederhana dengan spraygun low pressure.
3.      Air compressor mini untuk pengecatan menggunakan air pen brush.
2.      Air compressor direct driven

System dari air compressor ini adalah direct driven, yaitu motor penggerak langsung terkoneksi dengan pompa udara. Jadi jumlah putaran motor penggerak (rpm) otomatis sama dengan kecepatan pompa udara. Biasa pada jenis air compressor model direct driven menggunakan motor dengan kecepatan sekitar 2.850 rpm dan menggunakan system single piston pada pompa udara.

Kelebihan air compressor jenis ini adalah kecepatan pengisian (air delivery) yang cukup tinggi karena pompa udara diputar dengan kecepatan sekitar 2.850 rpm. Kekurangan jenis air compressor ini adalah suara yang dihasilkan cukup keras, karena hasil dari putaran tinggi pompa udara, juga lebih banyak menghasilkan air di dalam tanki tekanan.
3.      Air compressor belt driven

Sesuai dengan namanya, air compressor ini menggunakan system koneksi antara tenaga penggerak dan pompa udara menggunakan vanbelt (v-belt) jenis ini yang sering dijumpai di tempat tukang tambal ban. Tenaga penggerak dapat menggunakan elektromotor listrik atau mesin berbahan bakar bensin atau solar.Air compressor ini yang paling sering digunakan dibanding dengan air compressor jenis lain, karena direkomendasikan menggunakan penggerak dengan putaran sekitar 1500 rpm, mengakibatkan air compressor ini lebih tahan lama dibandingkan dengan jenis direct driven. Air compressor jenis ini direkomendasikan bekerja selama 8 jam, apabila digunakan lebih dari 8 jam maka udara yg dihasilkan akan lebih banyak mengandung air.

Air compressor ini dibagi lagi menjadi beberapa jenis, yaitu :
1.      Single stage air compressor (working pressure 8 bar, maximum pressure 10 bar)
2.      Two stage air compressor (working pressure 12 bar, maximum pressure 14 bar)
3.      High pressure air compressor (working pressure up to 14 bar)
4.      Booster air compressor (air compressor tambahan agar tekanan dapat menjadi lebih tinggi)
Pada setiap jenis type air compressor diatas masih dibagi lagi sesuai dengan air delivery/debit udara yang dihasilkan.
4.      Air compressor screw

Air compressor jenis ini digunakan apabila ada kebutuhan tekanan udara selama 24 jam nonstop, atau pengguna membutuhkan air delivery/debit udara yang tinggi. Kelebihan dari screw air compressor adalah udara yang dihasilkan tidak banyak mengandung uap air, karena system dari air compressor ini menggunakan screw yaitu dua buah ulir yang saling berputar dalam memompa udara, air compressor jenis ini juga tidak menimbulkan suara bising.




Bagian- bagian kompresor angin
Selain kita mengenal berbagai jenis air compressor, sebaiknya kita juga mengenal beberapa perlengkapan untuk air compressor yang disesuaikan dengan kegunaan air compressor tersebut.
1.      Air dryer

Digunakan untuk mengeringkan udara setelah keluar dari air compressor, biasa digunakan untuk pengecatan kualitas tinggi, supply tekanan udara untuk pneumatic, air tools, dsb.

2.      Desicant dryer

Fungsinya sama dengan air dryer diatas, hanya efisiensi alat ini lebih tinggi daripada air dryer, biasa digunakan untuk mesin-mesin makanan dan farmasi.

3.      Air filter (filter udara)

Alat ini digunakan untuk menyaring partikel kotoran yang keluar dari air compressor, penggunaannya biasa dipasang sebelum air dryer atau desicant dryer. ada beberapa ukuran kerapatan saringan partikel kotoran dalam micron. Alat ini sering disalah artikan dapat menyaring air yang keluar dari air compressor, mungkin karena lama kelamaan dalam gelas di alat ini terdapat air, padahal air itu hasil dari tekanan udara yang terkondensasi dalam gelas, seperti halnya air yang terjadi dalam tanki air compressor. Padahal alat ini sama sekali tidak dapat menyaring molekul air yang keluar dari air compressor.

4.      Regulator

Alat ini digunakan untuk mengatur/menstabilkan tekanan yang keluar dari air compressor. Alat ini biasa tekoneksi dengan air filter.

5.      Lubrikator

Alat ini digunakan untuk menambah pelumas dalam udara yang keluar dari air compressor, biasa digunakan ketika air compressor digunakan untuk menggerakkan unit-unit pneumatik atau air tools, alat ini biasa terkoneksi bersama air filter dan regulator.

Post a Comment for "MATERI : Sistem hidrolik dan Kompresor Lengkap"